CS 598 WSI: Advanced Wireless Networks and Sensing Systems

Lecture 10: Wireless Sensing Deepak Vasisht

*Slides Courtesy of Prof. Fadel Adib

WiVi: Tracking People Through Walls with WiFi

Key Idea

Challenges

<u>Challenge #1:</u> Wall reflection is 10,000x stronger than any reflections coming from behind the wall

Challenge #2: Tracking people from their reflections

How Can We Eliminate the Wall's Reflection?

Idea: Transmit two waves that cancel each other when they reflect off static objects but not moving objects

People tend to move

Eliminating the Wall's Reflection

Two transmit antennas and one receive antenna

Eliminating the Wall's Reflection

Eliminating All Static Reflections

Eliminating All Static Reflections $y = h_1 x + h_2 \alpha x$

Reflections linearly combine over the wireless medium

$$y = \left(\sum_{i} h_{1i}\right) x + \left(\sum_{i} h_{2i}\right) \alpha x$$
reflector i

Static objects (wall, furniture, etc.) have constant channels

People move, therefore their channels change

$$y_i = h_{1i} x + h_{2i}(-h_{1i}/h_{2i})x$$

$$y_i = h_{1i}' x + h_{2i}'(-h_{1i}/h_{2i})x$$

Not Zero

Eliminating All Static Reflections

- Noise leads to errors in estimating the channel
 - Limits ability to cancel static reflections and sense motion behind the wall
 Channel estimates h≠h
- Refine channel estimates through an iterative nulling algorithm

How to extend to wideband WiFi channels?

How Can We Track Using Reflections?

Tracking Motion

Direction of motion

At any point in time, we have a single measurement

Device has one receive antenna

Tracking Motion

Direction of motion

At different points in time, human reflects signal from different points in space

Direction of ______

Human Motion Emulates an Antenna Array

Tracking Multiple Humans

One moving person is indicated by a single curvy line

Tracking Multiple Humans

Number of distinct curves at the same time corresponds to the number of humans

WiTrack

Measuring Distances

Measuring Reflection Time

• Option1: Transmit short pulse and listen for the echo.

Measuring Reflection Time

• Option1: Transmit short pulse and listen for the echo.

Need to sample at very high rate : UWB

Multi-GHz samplers are expensive and generate high noise: not suitable for this application

FMCW: Measure time by measuring frequency

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow Reflection Time \rightarrow Distance$

• FMCW Transmitted Signal $x(t) = e^{j2\pi(\frac{k}{2}(t^2+f_0t))}$ Frequency is linear in time; hence phase is quadratic

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

Dealing with multi-path when there is one moving user

Direct furniture reflection:

eliminated by subtracting consecutive measurements

Needs User to Move

Fails for multiple people in the environment, and we need a more comprehensive solution

How can we deal with multi-path reflections when there are multiple persons in the environment? Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points Experiment: Two users walking Setup Single Vantage Point 8 Distance (meters) 6 3 0 -2 -1 0 1 Distance (meters) -3 -4 2 3 4

<u>Mathematically:</u> each round-trip distance can be mapped to an ellipse whose foci are the transmitter and the receiver

Combining across Multiple Vantage Points Experiment: Two users walking Setup Two Vantage Points 8 Distance (meters) 0<u>4</u> -2 -1 0 1 Distance (meters) -3 2 3 4

Combining across Multiple Vantage Points Experiment: Two users walking Setup 16 Vantage Points 8 Distance (meters) N & A G 0 0 -4 -3 -2 2 -1 0 1 Distance (meters) 3 2 4 Localize the two users

How can we obtain 16 vantage points?

Achieving 16 vantage points

• Naïve solution: 1 Transmitter and 16 Receivers

• Ideally: 4 Transmitters and 4 Receivers

$$T_X$$
 T_X Y R_X Y T_X Y T_X Y R_X Y T_X Y T_X Y R_X Y

Problem: Different transmitters interfere with each other!

Let us look at standard mechanisms that are used to deal with interference

Would require N times the bandwidth!

TDMA: Transmitters take turns transmitting

I.

Would require N more time to localize

Ideally: Transmit in the same time and in the same frequency band without interfering

<u>Ideally:</u> Transmit in the same time and in the same frequency band without interfering

<u>Multi-shift FMCW:</u> a new mechanism to divide resources between transmitters so that they don't suffer from interference

Objective: Transmit and Get Reflection

• Largest reflection time indoors: 100ns

Multi-shift FMCW enables multiple transmissions at the **same time** and in the **same frequency band** without interference

Multi-Person Localization

 Multi-shift FMCW enables a large number of vantage points for accurate localization of multiple subjects

Multi-User LocalizationExperiment: Four persons walkingSetupAll Vantage Points

<u>Near-Far Problem:</u> Nearby persons have more power than distance reflectors and can mask them

Setup

All Vantage Points

Successive Silhouette Cancellation: a new algorithm that localizes multiple persons in the scene by addressing the near-far problem Successive Silhouette Cancellation: a new algorithm that localizes multiple persons in the scene by addressing the near-far problem

inspired by

Successive Interference Cancellation iteratively decode interfering transmissions by addressing the nearfar problem

First localize the user with the strongest reflection

After reconstructing and cancelling the first user's reflections

Iteratively localize the remaining users in the scene

Iteratively localize the remaining users in the scene

How can we localize static users?

Dealing with multi-path when there is one moving user

1. Direct furniture reflection:

eliminated by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

1. Direct furniture reflection:

eliminated by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize static users

 Breathing and walking happen at different time scales

-A user that is pacing moves at 1m/s

-When you breathe, chest moves by few mm/s

 Cannot use the same subtraction window to eliminate multi-path

User Walking at 1m/s

3s subtraction window

30ms subtraction window

User Sitting Still (Breathing)

User Sitting Still (Breathing)

Use multi-resolution subtraction window to eliminate multi-path while being able to localize both static and moving users

