CS 598 WSI: Advanced Wireless
 Networks and Sensing Systems

Lecture 10: Wireless Sensing
Deepak Vasisht
*Slides Courtesy of Prof. Fadel Adib

WiVi: Tracking People Through Walls with WiFi

Key Idea

Challenges

Challenge \#1: Wall reflection is 10,000x stronger than any reflections coming from behind the wall

Challenge \#2: Tracking people from their reflections

How Can We Eliminate the Wall's Reflection?

Idea: Transmit two waves that cancel each other when they reflect off static objects but not moving objects

Wall is static \longrightarrow disappears

People tend to move

detectable

Eliminating the Wall's Reflection

Two transmit antennas and one receive antenna

Eliminating the Wall's Reflection

 Received signal: $y=h_{1} x+h_{2} \alpha x$
Eliminating All Static Reflections

Eliminating All Static Reflections
 $$
y=h_{1} x+h_{2} \alpha x
$$

Reflections linearly combine over the wireless medium

Static objects (wall, furniture, etc.) have constant channels

$$
\underline{y_{i}=h_{11} x+h_{2 i}\left(-h_{1 i} / h_{2 i}\right) x} 0 \quad y_{i}=h_{1 i} x+h_{2 i}\left(-h_{1 i} / h_{2 i}\right) x
$$

Not Zero

Eliminating All Static Reflections

- Noise leads to errors in estimating the channel
-Limits ability to cancel static reflections and sense motion behind the wall
-Channel estimates $\hat{h} \neq h$
- Refine channel estimates through an iterative nulling algorithm

How to extend to wideband WiFi channels?

How Can We Track Using Reflections?

Tracking Motion

Direction of motion

At any point in time, we have a single measurement

Device has one receive antenna

Tracking Motion

Direction of motion Sl At different points in time,
human reflects signal from different points in space

Direction of motion

Direction of motion

At different points in time, human reflects signal from different points in space

Direction of motion

Tracking Multiple Humans

One moving person is indicated by a single curvy line

Spectrogram

Tracking Multiple Humans

Number of distinct curves at the same time corresponds to the number of humans

Two Humans

Three Humans

WiTrack

Measuring Distances

Distance $=$ Reflection time x speed of light

Measuring Reflection Time

- Option1: Transmit short pulse and listen for the echo.

Measuring Reflection Time

- Option1: Transmit short pulse and listen for the echo.

Txpulse Rxpulse

Need to sample at very high rate : UWB
Multi-GHz samplers are expensive and generate high noise: not suitable for this application

FMCW: Measure time by measuring frequency

Transmitted

How do we measure $\triangle F$?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow$ Reflection Time \rightarrow Distance

FMCW

- FMCW Transmitted Signal hence phase is quadratic

$$
x(t)=e^{j 2 \pi\left(\frac{k}{2}\left(t^{2}+f_{0} t\right)\right)}
$$

- FMCW Received Signal:

$$
y(t)=\sum_{i} A_{i} e^{j 2 \pi\left(\frac{k}{2}\left(\left(t-\tau_{i}\right)^{2}+f_{0}\left(t-\tau_{i}\right)\right)\right)}
$$

Reflections linearly combine over the
wireless medium hconversion:

$$
y_{b}(t)=\sum_{i} A_{i} e^{j 2 \pi\left(k \tau_{i} t+f_{0} \tau_{i}\right)} \hat{\ominus}_{\text {frequency } \mathrm{k}_{i}}
$$

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are ($T x, R x$)

By adding another antenna and intersecting the ellipses, we can localize the person

Dealing with multi-path when there is one moving user

Direct furniture reflection:
eliminated by subtracting consecutive measurements

Needs User to Move

Fails for multiple people in the environment, and we need a more comprehensive solution

How can we deal with multi-path reflections when there are multiple persons in the environment?

Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points
Experiment: Two users walking

Setup

Single Vantage Point

Mathematically: each round-trip distance can be
mapped to an ellipse whose foci are the transmitter and the receiver

Combining across Multiple Vantage Points

 Experiment: Two users walkingSetup

Two Vantage Points

Combining across Multiple Vantage Points

 Experiment: Two users walkingSetup

16 Vantage Points

How can we obtain 16 vantage points?

Achieving 16 vantage points

- Naïve solution: 1 Transmitter and 16 Receivers
- Ideally: 4 Transmitters and 4 Receivers

$$
\begin{aligned}
& \text { « } \mathrm{P} \times \mathrm{Y} \\
& { }_{\mathrm{dx}} \gamma_{\mathrm{bx}} \mathrm{Y}^{2}
\end{aligned}
$$

Problem: Different transmitters interfere with each other!

Let us look at standard mechanisms that are used to deal with interference

FDMA: Di壁deth e spectrum between transmitters

Would require N times the bandwidth!

TDMA: Transmitters take turns transmitting

Would require N more time to localize

Ideally: Transmit in the same time and in the same frequency band without interfering

Ideally: Transmit in the same time and in the same frequency band without interfering

Multi-shift FMCW:
 a new mechanism to divide resources between transmitters so that they don't suffer from interference

Objective: Transmit and Get Reflection

- Largest reflection time indoors: 100ns

Reflection of 1

Multi-shift FMCW enables multiple

 transmissions at the same time and in the same frequency band without interference

Multi-Person Localization

- Multi-shift FMCW enables a large number of vantage points for accurate localization of multiple subjects

Multi-User Localization

Experiment: Four persons walking

Setup

four persons

All Vantage Points

first person
other people or noise?

Near-Far Problem: Nearby persons have more

 power than distance reflectors and can mask them
Setup

four persons

All Vantage Points

first person
other people or noise?

Successive Silhouette Cancellation: a new algorithm that localizes multiple persons in the scene by addressing the near-far problem

Successive Silhouette Cancellation:
 a new algorithm that localizes multiple
 persons in the scene by addressing the near-far problem

 inspired by

 inspired by}

Successive Interference Cancellation iteratively decode interfering
transmissions by addressing the nearfar problem

Successive Interference

 CancellationRecover O's and 1's

Decode 0's and 1's

Subtract

Reconstruct modulation \& coding

Successive Silhouette Cancellation

Recover human reflections

Decode human location

Subtract

Model human and reconstruct reflection patterns

First localize the user with the strongest reflection

After reconstructing and cancelling the first user's reflections

Iteratively localize the remaining users in the scene

Iteratively localize the remaining users in the scene

How can we localize static users?

Dealing with multi-path when there is one moving user

1. Direct furniture reflection: eliminated by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

1. Direct furniture reflection: eliminated by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize

 static users- Breathing and walking happen at different time scales
- A user that is pacing moves at $1 \mathrm{~m} / \mathrm{s}$
-When you breathe, chest moves by few mm/s
- Cannot use the same subtraction window to eliminate multi-path

User Walking at $1 \mathrm{~m} / \mathrm{s}$

30ms subtraction window

3s subtraction window

Person appears in two locations

User Sitting Still (Breathing)

Cannot localize

User Sitting Still (Breathing)

30ms subtraction window

3s subtraction window

Use multi-resolution subtraction window to eliminate multi-path while being able to localize both static and moving users

